
MA 3046 - Matrix Analysis
Laboratory Number 5

Least Squares Solutions and Numerical Accuracy

As discussed in class, when a given system of equations

Ax = b

involves more equations than unknowns, i.e. when m > n, or when the system is overde-
termined, or when, more colloquially, the matrix A is “tall and skinny”, the system is
generally not solvable in the “classical” (Gaussian elimination or equality) sense. (The
exception occurs in the unusual instance where b just happens to lie in Col(A).)

In this situation, the best that can generally can be expected is to find an x that
will “closely” solve the system, in the sense that the values of Ax computed on the left
using that x will closely approximate those of b on the right. The only drawback with
this approach is that the particular x that one finds generally depends on how they wish
to measure “close,” and there is more than one reasonable way to do this. The arguably
most common measure, however, is the Euclidean norm of the residual,

k r k2 = kb−Ax k2 ,

i.e. precisely the distance from Ax to b. The minimum value of this quantity occurs
when r is orthogonal to Col(A), or, equivalently, when r is orthogonal either to each
column of A (or to each row of AH). This last condition, however, expressed in matrix
form, becomes

AH (b−Ax) = 0 =⇒ AH Ax = AH b (1)

This form is commonly called the normal equations.

We can easily show that Null(A) is equal to Null(AH A), and therefore the normal
equations will be uniquely solvable if and only if Null(A)= {0}. The entire situation, how-
ever, becomes a bit muddier when we must factor in the effects of floating-point arithmetic.
Specifically, we can show that, in general, the singular values of AH A are precisely the
squares of the singular value of A, and therefore, in the Euclidean norm:

cond
¡
AH A

¢
= (cond (A))2

Therefore matrices that are mildly ill-conditioned, i.e. for which cond(A)
.
= eps−1/2, may

not be accurately solvable when converted to the normal equations form. Fortunately, the
MATLAB backslash function automatically takes care of all these issues, at least as well
any numerical method can. Specifically, it uses basic Gaussian elimination, implemented
via LU decomposition, when A is square. However, when m > n, backslash switches
to least squares, although implemented by a method, apparently related to the QR
factorization, which is equivalent to the normal equations, but numerically preferable.

83

However, when A has a fairly large condition number, even MATLAB can have diffi-
culties. Before implementing least squares in such situations, it is important to recall that
least squares in effect projects b onto Col(A), and that ill-conditioning generally reflects
the fact that one or more columns of A are linearly dependent. Therefore, if we could
simply remove those columns, we would be left with ones that were “really” linearly inde-
pendent, but spanned essentially the same column space, and which should hence produce
essentially the same projection. However, if properly chosen, this reduced set of columns
should yield a reasonably well-conditioned matrix. The only practical problem becomes de-
ciding which columns could be removed without significantly affecting the column space.
But given either the SVD or the QR factorization, such a choice should not be too
difficult.

84

Name:

MA 3046 - Matrix Analysis
Laboratory Number 5

Least Squares Solutions and Numerical Accuracy

1. Switch to the your lab directory and start MATLAB. Download the file

least sq data.mat

to your disk.

2. Give the command

load least sq data

to input the random 20 × 4 matrix a, and determine its condition number. (Save this
matrix and also print it out.)

cond(a) =

Then create the four-element column vector xexact

xexact =

2
−3
1
0

Finally, create a twenty-element column vector b by giving the MATLAB command

b = a ∗ xexact

In what subspace of IR20 should b lie?

85

3. Briefly explain what should happen if you were to apply Gaussian elimination to the
system:

ax = b

for this a and b.

4. Create and store as qhat and rhat, respectively, the matrices Q̂ and R̂ associated
with the reduced QR factorization of the matrix a created in part 2. Record the values
of

rhat =

Briefly describe why the values in rhat either do or do not seem reasonable in light of
the value of condition number of a as determined in that same part.

5. Compute the singular values of the matrix a created in part 2.

Briefly describe why these values either do or do not seem reasonable in light of the value
of condition number of a as determined in that same part.

86

6. Compute

xbs = a\b , xne = (a0 ∗ a) \ (a0 ∗ b) and xqr = rhat\ ¡qhat0 ∗ b¢
and record their values:

xbs =

, xne =

and xqr =

What should these be computing?

xbs −

xne −

xqr −

Briefly explain why these values appear either reasonable or unreasonable, considering the
value of xexact as created in part 2.

87

7. Find the norms:

kxbs− xne k2 −

kxbs− xqr k2 −

What do these values say about solving least squares and about MATLAB’s backslash
algorithm when m > n and the matrix is well-conditioned?

8. Next form the residual

r = b — a*xbs

How does this result agree or not agree with the way you formed b in part 2 above.

Similarly analyze

r = b — a∗xne and r = b — a∗xqr

88

9. Now, create a column vector bp by giving the MATLAB command

bp = b + 0.05∗ randn(20,1)

Briefly describe what this should do?

10. Now compute both

xpbs = a\bp , xpne = (a0 ∗ a) \ (a0 ∗ bp) and xpqr = rhat\ (qhat0 ∗ bp)

and record their values:

xpbs =

, xpne =

and xpqr =

Briefly explain why these values either are or are not reasonable considering the values you
computed in part 7 and your answer to part 9 above.

89

11. Find the norms:

kxpbs− xpne k2 −

kxpbs− xpqr k2 −

Briefly describe whether these values still support your conclusion in part 7 about MAT-
LAB’s backslash algorithm when m > n and the matrix is well-conditioned?

12. Next form the residual

rp = bp — a*xpbs

and contrast the value here with the value of the residual computed in part 8. Briefly
explain why or why not any differences appear reasonable.

Now compute a0∗rp =

=

Briefly describe how well this result does or does not agree with theory?

90

13. Also create, by hand, the upper triangular matrix:

u =

1 0 0 −4
0 1 0 5
0 0 1 2
0 0 0 10−8

and the matrix

aa = a ∗ u
What are the MATLAB rank and condition number of aa?

rank(aa) =

cond(aa) =

Which columns of a should approximately span Col(aa)?

14. Compute the singular values of the matrix aa created in part 13.

Briefly describe why these values either do or do not seem reasonable in light of the way
in which aa was constructed, and the value of condition number of aa as determined
in that same part.

91

15. Create and store as qqhat and rrhat, respectively, the matrices associated with the
reduced QR factorization of the matrix aa created in part 13. Record the values of

rrhat =

Briefly describe why the values in rrhat either do or do not seem reasonable in light of
your answers to the parts 13 and 14.

92

16. Now compute both

xxbs = aa\bp , xxne = (aa0 ∗ aa) \ (aa0 ∗ bp)
and

xxqr = rrhat\ (qqhat0 ∗ bp)

and record their values:

xxbs =

, xxne =

and

xxqr =

What should these vectors represent and what do your actual values say about MATLAB’s
backslash algorithm and the normal equations when m > n and the matrix is not well-
conditioned?

93

17. Create the matrix

aa3 = aa(: , 1:3)

What are the MATLAB rank and condition number of aa3?

rank(aa3) =

cond(aa3) =

18. Now compute both

xx3bp = aa3\bp and xx3ne = (aa30 ∗ aa3) \ (aa30 ∗ bp)

and record their values:

xx3bp =

xx3ne =

What should these now represent? Compare these values both to each other and to the
values you computed in part 16. What conclusion can you draw from that comparison?

94

19. Now form the residuals

r1 = bp — aa*xxbs , r2 = bp — aa*xxne , r3 = bp — aa3*xx3bp

and

r4 = bp — aa3*xx3ne

and compute their Euclidean norms:

k r1 k2 =

k r2 k2 =

k r3 k2 =

k r4 k2 =

What do these values and the values of the various x’s computed in parts 16-18 say about
the advisability and costs, if any, of removing nearly-linearly dependent columns from
ill-conditioned systems?

95

